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Abstract
We study the resonant acoustic transmission through compound subwavelength periodic hole
arrays. Fabry–Perot resonance peak splitting is found. We can attribute the phenomenon to
phase resonances via calculating the phase difference between adjacent holes in a unit cell.
Furthermore, by analyzing the transmission characteristics of different kinds of compound hole
arrays for normal and non-normal incidence, it can be demonstrated that the phase resonances
arise from the coupling between holes in a unit cell. In addition, we also discuss the
transmission resonance originating from acoustic surface modes and illustrate the hybridized
features of acoustic surface modes and Fabry–Perot modes. The results are expected to have
advantages in tailoring resonant acoustic transmission properties.

(Some figures in this article are in colour only in the electronic version)

Extraordinary optical transmission (EOT) through the arrays
of subwavelength holes in metallic films has attracted much
attention since the pioneering work of Ebbesen et al [1].
Two main mechanisms leading to the EOT have been
established: surface plasmon resonances [2–6] and localized
waveguide resonances [7–9]. Recently, the idea of EOT
has been transferred to the acoustic case and, like for light,
extraordinary acoustic transmission (EAT) has been confirmed
for plates with one-dimensional periodic arrays of grooves [10]
or slits [11, 12] and two-dimensional periodic arrays of
holes [13–15]. Unlike the physical origin of EOT, that of EAT
has been mainly attributed as the excitation of acoustic surface
waves (ASWs) [10] arising from the surface periodicity and the
Fabry–Perot (FP) resonances [13–15] in individual holes and
the hybridization between them [14]. On the other hand, for the
electromagnetic case the so-called phase resonances, appearing
in the transmittance as sharp dips, have been reported in one-
dimensional compound metallic gratings [16–20]. Like for
the electromagnetic counterpart, it is also expected that phase
resonances will occur in the acoustic transmission through
compound subwavelength hole arrays.

1 Author to whom any correspondence should be addressed.

In this paper, we present a theoretical study of the acoustic
transmission through compound subwavelength periodic hole
arrays. We show the sharp dips, leading to the splitting of
FP resonance peaks, appear in the transmittance when extra
holes are added per unit cell. By investigating the field
phases in different holes in a unit cell, we can conclude
that the appearance of transmission dips arises from the
field–phase interference between holes, i.e. when the phase
difference between holes approaches π , their interference
can induce a phase resonance dip. Next, by discussing the
transmission resonance resulting from ASWs, the hybridized
features, of acoustic surface modes and FP modes, are further
demonstrated.

In figure 1, we schematically show four subwavelength
hole unit cells perforated on brass plates with the thickness
h = 2 mm and these unit cells can be used to form the
compound periodic hole arrays. Figure 1(a) represents a simple
periodic hole array, a unit cell consisting of only one square
hole. We chose the hole size 1.063 mm × 1.063 mm and
the period d = 2 mm, which present the same hole filling
fraction 0.282 and array period 2 mm as the array of circular
holes studied in [13]. Figures 1(b)–(d) show compound hole
arrays with the identical array period d = 2 mm and hole filling
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Figure 1. Schematic illustrations of four compound periodic hole
arrays perforated on brass plates with the thickness h = 2 mm,
period d = 2 mm and other geometrical parameters labeled, where
only a unit cell for each hole array is plotted.

fraction 0.282. The other different parameters are the numbers
and sizes of holes in a unit cell. In figures 1(b)–(d), a unit cell
consists of two identical holes with size 0.5 mm × 1.13 mm
and separation l = 0.6 mm, two different holes with sizes
0.6 mm × 1.617 mm and 0.4 mm × 0.4 mm and separation
l = 0.6 mm, three identical holes with size 0.3 mm×1.256 mm
and separations l1, l2, respectively.

The theoretical treatment for these compound hole arrays
is based on the modal expansion in the whole space. For an
incident plane acoustic wave with wavelength λ, in incidence
region I and transmission region III, the pressure fields can be
expressed in terms of plane waves, which read

pI = ei(k0
‖·r+k0

z z) +
∑

k‖

rk‖e
−ikz zeik‖·r (1)

and
pIII =

∑

k‖

tk‖e
ikz (z−h)eik‖·r, (2)

where k‖ = k0
‖ +G is the vector parallel to the surface with G

being the reciprocal vector of the hole lattice, and rk‖ and tk‖
are the reflection and transmission amplitudes.

In region II, the pressure field can be expanded in terms of
the waveguide eigenmodes in holes as

pII =
N∑

j=1

∑

α j ,β j

cos[α j (x − x j)] cos[β j(y − y j)]

× [Cα j β j e
iqα j β j z + Dα j β j e

−iqα j β j z], (3)

where the subscript j denotes the hole and N is the number of

holes in a unit cell. qα j β j =
√

k2 − α2
j − β2

j with |k| = 2π/λ

is the propagation constant of the waveguide mode |α jβ j〉 in
hole j , Cα j β j and Dα j β j are the wave amplitudes, and x j(y j)

prescribes the central position of hole j .
For each subwavelength hole, it is enough to consider

only the first waveguide eigenmode. In some situations, the
plate is treated as rigid [13–15] and placed in water. Then
for the first eigenmode, we can take α j , β j = 0. By using
the continuity of the pressure field p and the velocity field
vz = −(1/iρ0ω)∂p/∂z at the two surfaces, we can derive a
matrix equation for the unknown reflection and transmission
amplitudes, where ρ0 is the density of water and ω = c(2π/λ)

is the angular frequency of the incident plane wave with the
acoustic velocity c = 1490 m s−1.

Figure 2. (a)–(e) Calculated transmittance for a normally incident
acoustic wave impinging on the compound periodic hole arrays
shown in figure 1. Here (d), (e) correspond to figure 1(d) with
separations l1 = l2 = 0.4 mm and l1 = 0.4 mm, l2 = 0.6 mm,
respectively. (b′)–(e′) Phase differences of the fields between
adjacent holes for the structures considered in (b)–(e), respectively.
N is the number of holes in a unit cell.

The left panels in figure 2 show the calculated
transmittance spectra for the hole arrays shown in figure 1;
among them, figures 2(a)–(c) correspond to figures 1(a)–
(c) and figures 2(d) and (e) correspond to figure 1(d) with
separations l1 = l2 = 0.4 mm and l1 = 0.4 mm, l2 = 0.6 mm,
respectively. Comparing figure 2(a) here with figure 1(a) in the
earlier work of Hou et al [13], we can observe that there is little
difference between them. As was explained, the transmission
peaks at the frequencies 0.310 and 0.598 MHz mainly arise
from the FP resonances, and the minimum transmission at
the frequency 0.745 MHz (corresponding to the wavelength
2 mm) results from the Wood anomaly. By calculating the
transmission for different hole shapes (to keep the period and
hole filling fraction invariant) we find that the hole shapes
have little influence on EAT, which is different from the
phenomenon for EOT [7]. In physics, it originates from the
existence of zero-order waveguide mode for the acoustic case,
which implies that the pressure field pII is constant in the xy
plane and independent of the hole shapes.

For the two-sublattice hole array with identical holes in
a unit cell, it can be observed that the transmission spectrum
shows little difference from figure 2(a) except that the FP
resonance peaks are shifted slightly to higher frequencies, as
shown in figure 2(b). However, it is found that each FP
resonance peak splits into two parts for the two-sublattice
hole array with two different holes in a unit cell, as shown
in figure 2(c). In the case of three-sublattice hole arrays with
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identical holes, we also find that the FP resonance peaks split.
More interesting is that each FP resonance peak splits into two
when the separations between adjacent holes are equal, while it
splits into three when they are unequal, as shown in figures 2(d)
and (e), respectively. Since all the compound hole arrays have
identical period, the transmission minimum from the Wood
anomaly is always at the frequency 0.745 MHz, as shown in
figures 2(b)–(e).

All the transmission spectra for the acoustic waves
shown here have very similar features to the ones obtained
through the compound metallic gratings in the electromagnetic
case [16–18, 20]. So, like for the electromagnetic case,
we calculate the phase difference of pressure fields between
adjacent holes in a unit cell for the cases in figures 2(b)–(e),
respectively. The calculated results are shown in figures 2(b′)–
(e′). Comparing figures 2(b)–(e) with figures 2(b′)–(e′)
respectively, we can find that each transmission dip, leading
to the splitting of a FP resonance peak, has an exact
correspondence to the π phase difference between adjacent
holes. So we can conclude that the transmission dips arise from
the field–phase interference between holes in a unit cell and so
these can be called phase resonances.

The physical origins of phase resonances can be explained
as follows. On one hand, it is well known that for a single
periodic hole array, the translation invariance can reduce the
field degrees of freedom to just a unit cell. Therefore, the
fields in all holes are equal when a plane wave is normally
incident. As for compound periodic hole arrays, this translation
invariance can also reduce the degrees of freedom to a unit
cell, but it cannot ensure that the fields of different holes in a
unit cell are identical. On the other hand, the FP resonances
arise from individual hole cavities, so the addition of extra
hole cavities to each unit cell can introduce new FP modes
(new degrees of freedom). These FP modes induced by
different holes in a unit cell are degenerate if the holes have
identical hole area, and nondegenerate if these hole areas are
different. For the nondegenerate case, it is understandable that
the field phases in different holes are unequal. Like for the
electromagnetic case [16], when the phase difference between
holes approaches π , the interference between them can lead to
the appearance of transmission dips, as shown in figures 2(c)
and (c′). As for the holes with same areas, it will be attested
that the coupling between holes can remove the degeneracy of
the FP modes. In fact, for the case in figure 2(c), the coupling
between holes in a unit cell can also be of great importance. It
is noted that holes can couple acoustically through diffraction
modes, but the coupled FP modes strongly hybridize with
ASWs, which are built up from periodic hole arrays [10, 21],
instead of the diffraction evanescent waves [22]. The
hybridized features can be understood analogously from the
continuous evolution of dispersion curves from horizontal
surface resonances (surface plasmon resonance) to vertical
surface resonances (FP resonances) for deeper gratings in the
electromagnetic case [23].

For a normally incident acoustic wave impinging at
the compound periodic hole arrays with identical holes, the
intensity of coupling between holes is only determined by the
separations between them. In consequence, the possible phase

configurations must be symmetrical when the arrangements
of the holes in a unit cell are regular [16], such as the
equal separations between adjacent holes. Accordingly, the
degeneracy of the FP modes cannot be removed completely.
Therefore, for the hole arrays in figure 1(b), the field phases
in the two holes are equal due to the symmetry, as found in
figure 2 (b′). Similarly, for the three-sublattice hole array with
identical holes, the field phases in the external two holes must
be identical when the separations between adjacent holes are
equal, yet the field phases in the central hole and the external
holes are different, as shown in figure 2(d′). The null phase
difference between the external two holes implies that the
degeneracy of the FP modes induced by the two holes cannot
be removed. As a result, there is only one transmission dip
appearing in each FP resonance peak in this three-sublattice
hole array, as shown in figure 2(d). When the separations
between adjacent holes in a unit cell are unequal, the symmetry
is broken entirely and then the degeneracy of the FP modes
is removed completely. It can be observed that each FP peak
splits into three peaks with two phase resonance dips, as found
in figures 2(e) and (e′). In addition, we observe that there
is a π phase difference at frequency around 0.745 MHz in
figure 2(d′), but it does not correspond to a transmission dip in
figure 2(d). This is because of the complex interplay between
the FP modes and surface modes, where the plate thickness
plays a central role. The transmission peaks and dip around
0.745 MHz just do not display at the thickness h = 2 mm, but
the related π phase difference has existed. We can find that this
π phase difference does correspond to a transmission dip when
we slightly increase the plate thickness.

Non-normal incidence is a more complex situation. The
intensity of the coupling between holes will be affected by
the incidence angle. The possible phase configurations cannot
remain symmetrical even though the holes are symmetrically
arranged in a unit cell, which has been shown similarly in
the electromagnetic case [17, 20]. Therefore, we can expect
to remove all the degeneracy of the FP modes by taking a
plane wave impinging at the compound arrays in figures 1(b)
and (d) non-normally. Figure 3 shows the grayscale plots
of transmittance as a function of the incidence angle and
frequency. For convenience, the angle-dependent transmission
through the single periodic hole array in figure 1(a) is also
given in figure 3(a), from which we observe that there are two
FP resonance bands (lighter zones). One band at a frequency
around 0.3 MHz is hardly affected by the incidence angle,
whereas the other band at a frequency that is ∈ [0.5, 0.6] MHz
is angle dependent, which indicates that this FP mode strongly
hybridizes with the acoustic surface modes. In figure 3(b),
which corresponds to the hole array in figure 1(b), we can
find that a phase resonance band (gray zone) appears within
each FP resonance band when the incidence angle changes.
The appearance of the phase resonance bands manifests that
the field phases in the two holes are no longer equal and
the degeneracy of the FP modes has been broken in the
oblique incidence case, which can be demonstrated by its phase
difference curve (not shown). Similarly, for the hole array
in figure 1(d) with separations l1 = l2 = 0.4 mm, we can
observe that there are two phase resonance bands within each
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Figure 3. Grayscale plots of transmittance, as a function of incidence
angle and frequency, through the hole arrays considered in
figures 1(a), (b) and (d) with separations l1 = l2 = 0.4 mm,
respectively.

FP resonance band under non-normal incidence, as shown in
figure 3(c). For frequency that is ∈ [0.5, 0.6] MHz, we can
observe that the phase resonance band is angle dependent and
adheres to the transmission band, as found in figures 3(b)
and (c), respectively. This characteristic indicates that not only
the FP resonances but also the relevant phase resonances can be
greatly affected by ASWs. In figures 3(b) and (c) at a frequency
around 0.62 MHz, another angle-independent FP resonance
band appears, which further demonstrates that the addition of
holes per period can introduce new FP modes (new degrees of
freedom). The coupling of these degenerate FP modes induces
the breaking of the degeneracy and then leads to the appearance
of phase resonances.

Figure 4. Grayscale plot of transmittance as a function of hole area
ratio S and frequency for a normally incident plane wave impinging
on two-sublattice periodic hole arrays perforated on the plates with
the thickness 2 mm. The period 2 mm, separation between holes
0.6 mm and hole filling fraction 0.282 remain invariant.

For the two-sublattice hole array in figure 1(c), we cannot
get any new phase resonance dips by changing the incidence
angle because the degenerate FP modes have been opened up.
However, due to the fact that the difference of the hole areas
plays a leading role in the appearance of phase resonances, it
can be expected to tune the phase resonance dip at the normal
incidence by adjusting the hole area ratio S between the two
holes in a unit cell (to keep the hole filling fraction constant).
There are some features in common with the adjusting of the
slit length in the compound metallic slits [19]. In essence, it is
the modulation of the coupling between holes. The calculated
grayscale plot of transmittance versus frequency and hole area
ratio S is shown in figure 4, from which we can find that the
widening of the phase resonance dip at a frequency around
0.6 MHz is proportional to the area ratio S, but it has little
dependence on the area ratio at a frequency around 0.3 MHz.
From the preceding discussion, we see that the FP mode at
a frequency around 0.6 MHz strongly hybridizes with the
acoustic surface modes, so the relevant phase resonance band
must be sensitive to the array period and area fraction of holes.
However, the other resonance band at a frequency around
0.3 MHz is hardly affected by the ASWs; thus the relevant
phase resonance is insensitive to the hole area ratio of holes.
It is noted that there is no dip found when the area ratio equals
1, just as in figure 2(a). By adjusting the area ratio between
holes, we can achieve a wide range of acoustic screening at
frequency lower than that of the Wood anomaly [24].

Other than the FP resonances and the phase resonances
discussed above, for a perfect rigid plate with a periodic
hole array, acoustic surface modes are built up and they
can lead to transmission resonance at wavelength λ ≈ d .
Due to the comparability of the acoustic transmission through
subwavelength apertures and the optical transmission through
metallic gratings, we can get band structures similar to those
presented with the metallic gratings [9, 23] to distinguish the
transmission resonances involving the surface modes and FP
resonance in the acoustic case. As was explained for the
metallic gratings, the resonance peaks arising from the surface
plasmon resonances can be affected by the grating thickness [9]
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and the surface plasmon resonances can continuously evolve
into FP resonances for greater thickness [23]. This is also
the case for the acoustic transmission. The calculations can
manifest that, for the hole arrays with thickness h = 0.1 mm,
a remarkable resonance peak appears at wavelength slightly
larger than the array period and this resonance peak does not
split even for compound hole arrays. Both features tell us
that this resonance peak originates from the acoustic surface
mode, completely. However, on increasing the plate thickness,
we can observe that a series of peaks at wavelength λ > d
emerges and the splitting of these peaks can be found for
compound hole arrays. In addition, the continuous transitions
between the acoustic surface modes and FP modes can also be
obtained for deeper hole arrays. All of these characteristics
imply hybridization between the surface modes and FP modes
in the resonant acoustic transmission.

In conclusion, we have studied the resonant acoustic
transmission through several kinds of compound periodic
hole arrays with acoustic waves at normal and non-normal
incidence. A new resonance mechanism, phase resonances,
is found. The phase resonances, arising from the coupling
between holes in a unit cell, are characterized by the π phase
difference between adjacent holes and exhibited as sharp dips
in transmittance spectra. Moreover, the transmission resonance
stemming from the ASWs is also discussed briefly and the
hybridized features, of the surface modes and FP modes, are
further demonstrated. Our results may be useful for tailoring
the acoustic transmission properties and are expected to have
applications in soundproofing engineering and acoustic filters.
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